Distinct roles for dorsal CA3 and CA1 in memory for sequential nonspatial events.

نویسندگان

  • Anja Farovik
  • Laura M Dupont
  • Howard Eichenbaum
چکیده

Previous studies have suggested that dorsal hippocampal areas CA3 and CA1 are both involved in representing sequences of events that compose unique episodes. However, it is uncertain whether the contribution of CA3 is restricted to spatial information, and it is unclear whether CA1 encodes order per se or contributes by an active maintenance of memories of sequential events. Here, we developed a new behavioral task that examines memory for the order of sequential nonspatial events presented as trial-unique odor pairings. When the interval between odors within a studied pair was brief (3 sec), bilateral dorsal CA3 lesions severely disrupted memory for their order, whereas dorsal CA1 lesions did not affect performance. However, when the inter-item interval was extended to 10 sec, CA1 lesions, as well as CA3 lesions, severely disrupted performance. These findings suggest that the role of CA3 in sequence memory is not limited to spatial information, but rather appears to be a fundamental property of CA3 function. In contrast, CA1 becomes involved when memories for events must be held or sequenced over long intervals. Thus, CA3 and CA1 are both involved in memory for sequential nonspatial events that compose unique experiences, and these areas play different roles that are distinguished by the duration of time that must be bridged between key events.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proximodistal segregation of nonspatial information in CA3: preferential recruitment of a proximal CA3-distal CA1 network in nonspatial recognition memory.

A prevailing view in memory research is that CA3 principally supports spatial processes. However, few studies have investigated the contribution of CA3 to nonspatial memory function. Interestingly, the proximal part of CA3 (close to the dentate gyrus) predominantly projects to distal CA1 (away from the dentate gyrus), which preferentially processes nonspatial information. Moreover, the cytoarch...

متن کامل

Nonspatial sequence coding varies along the CA1 transverse axis.

The hippocampus plays a critical role in the memory for sequences of events, a defining feature of episodic memory. To shed light on the fundamental mechanisms supporting this capacity, we recently recorded neural activity in CA1 as rats performed a nonspatial odor sequence memory task. Our main finding was that, while the animals' location and behavior remained constant, a proportion of CA1 ne...

متن کامل

Encoding, consolidation, and retrieval of contextual memory: differential involvement of dorsal CA3 and CA1 hippocampal subregions.

Studies on human and animals shed light on the unique hippocampus contributions to relational memory. However, the particular role of each hippocampal subregion in memory processing is still not clear. Hippocampal computational models and theories have emphasized a unique function in memory for each hippocampal subregion, with the CA3 area acting as an autoassociative memory network and the CA1...

متن کامل

Dissociations of the medial and lateral perforant path projections into dorsal DG, CA3, and CA1 for spatial and nonspatial (visual object) information processing.

Medial perforant path plasticity can be attenuated by 2-amino-5-phosphonovaleric acid (APV) infusions, whereas lateral perforant path plasticity can be attenuated by naloxone infusions. The present experiment was designed to evaluate the role of each entorhinal efferent pathway into the dorsal hippocampus for detection of spatial and nonspatial (visual object) changes in the overall configurati...

متن کامل

Differential roles for hippocampal areas CA1 and CA3 in the contextual encoding and retrieval of extinguished fear.

Recent studies demonstrate that context-specific memory retrieval after extinction requires the hippocampus. However, the contribution of hippocampal subfields to the context-dependent expression of extinction is not known. In the present experiments, we examined the roles of areas CA1 and CA3 of the dorsal hippocampus in the context specificity of extinction. After pairing an auditory conditio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Learning & memory

دوره 17 1  شماره 

صفحات  -

تاریخ انتشار 2010